Harmonic technique

Dr. Eyal Lederman DO PhD cpd@cpdo.net Contents of course

- The lumbar spine
- Cervical spine & CD junction
- Lower ribs
- Thorax & ribs
- Shoulder
- Hips
- BiomechanicsPhysiology of repair & adaptation
- Clinical application

Definition of Harmonic Motion

The rhythmic and cyclical motion of an object between two spatial positions

Definition of Harmonic Technique

A manual technique which brings on a state of resonance within the body

Harmonic vs. Rhythmic

Harmonic

Rhythmic

Mechanics of harmonics

Pendulums

Springs

40

¢.

Spring-energy

Amplitude & frequency

Dampened oscillation

Resonant frequency

Springs and pendulums in the body

	Frequency determined by:	Where in the body	Affected by:
Spring	Mass Stiffness	Antagonistic tissue (as elastic strain energy) Tissues under compression (e.g discs)	Oedema Scarring Adhesions Increase in muscle tension* Weight gains
Pendulum	Length of the arm	Limbs Counter-motion of masses	All masses are combinations of spring and pendulums, affected by above

* Can be diagnostic

Springs in the body

Pendulums in the body

Harmonic in motion

Rotational pendulums

Free vibrating mass

Λ

Coupled motion

Resonant frequency in human movement

Resonant frequency in human movement

Resonance in rhythmic movement is associated with metabolic minima and stability of movement patterns compared to other frequencies

GL Cargon, M. Montover, N. Weine, G. Mausa - Filippin. 2027 Interessantiating trapparent systematic money, Architecturguescharated at Physicaling, 23: 644 C. L. Fordyn, E. Hannes, J. School, C. E. They for high trapping trapping money in the systematic systematic money in the systematic systemat

Resonant frequency in human movement

"Pendular oscillations of a limb or limb segment, attunement of the central nervous system to the resonant frequency minimizes the variables to be controlled and maximizes the predictability of the rhythmic movement's chaotic dynamics"

ents (Met Behav 1995 Mar-28/1)-1,14

Neural control

Getting it right

- The body masses have individual resonant frequency
- · Each mass has up to six different patterns of oscillation
- · Harmonic Technique is about amplifying these patterns
- If its not easy it can't be Harmonic

Therapeutic role of Harmonic Techniques

The pathology

Process Approach

Co-create with the patient environments in which their recovery can be optimised.

6 weeks after injury.....

Lederman E 2013 Therapeutic stretching: towards a functional approach. Elsevier

Recovery processes

Recovery environments

Recovery environments: management considerations

Process	Condition	Specific management	Shared management
Repair	All acute conditions, max 8 weeks: All tissue damage, Joint & muscle sprains, post surgery, blunt trauma, first phase of frozen shoulder,	Moderate cyclical and repetitive loading Applied locally to affected area Gradual loading Pain-free / tolerable movement Can be either active or passive Any movement pattern but preferably functional. Extra-functional is OK	Psychological Ease movement pain related anxieties, catastrophisms, support, reassure, comfort Sooth and calm Therapeutic relationship - trust, non- judgmental, empathic Contextual ractors Contextual ractors
Adaptation	All chronic conditions: Post immobilisation contracture, ROM rehab, postural and movement re- education/rehab, CNS damage/rehab, structural/biomecha nical change/reaover human performance	Active Task specific whole and goal movement Functional Repetition Overbaading Discontfart likely and generally OK	Inform Plan Set goals Provide choice Behavioural Support recovery behaviour Raise awareness to avoidance behaviour Physical Functional movement Frequent exposure to activity
Alleviation of symptoms	Acute/Chronic pain/discomfort Acute/chronic stiffness	Many treatment modalities may be beneficial depending on patient expectations Steep & relaxation Physically: Active may be better than passive movement Cyclical movement may be better than static approaches Functional or extra-functional	

Treatment strategy acute injuries

Consider this management						
Process	Condition	Specific management	Shared management			
Repair	All acute conditions, max 8 weeks: All tissue damage, Joint & muscle sprains, post surgery, blunt trauma, first phase of frozen shoulder,	Moderate cyclical and repetitive loading Applied locally to affected area Gradual loading Pain-free / toierable movement Can be either active or passive Any movement pattern but preferably functional. Extra-functional is OK	Psychological Ease movement pain related anxieties, catastrophising, support, reassure, comfort, Sooth and calm Therapeutic relationship - trust, non- judgmental, empathic. Contextual factors Cognitive Inform			
Adaptation			Inform Plan Set goals Provide choice Behavioural Support recovery behaviour Passe awareness to avoidance behaviour Physical Functional movement Frequent exposure to activity			
Alleviation of symptoms						

Reduced ROM

Process	Condition	Specific management	Shared management
Repair			Psychological Ease movement pain related anxieties, catastrophism, support, reassure, confort, Sooth and calm Therapeutic relationship - trust, non- judgmental, empathic. Contextual factors Cognitive
Adaptation	All chronic conditions: Post immobilisation contracture, ROM rehab, postural and movement re- education/rehab, CNS damage/rehab, structural/biomecha nical change human performance	Active Tasks specific Vinkle and goal movement Functional Respection Overloading Disconfort likely and generally OK	Inform Pin Set goal Provide choice Behavioural Support recovery behaviour Raise awareness to avoidance behaviour Physical Functional movement Frequent exposure to activity
Alleviation of symptoms			

Consider this management					
Process	Condition Specific management		Shared management		
Repair			Psychological Ease movement pain related anxieties, catastrophilong, support, reassure, comfor Sooth and calm Therapeutic relationship - trust, non- judgmental, empathic. Contextual factors Cognitive		
Adaptation			Inform Part Set goals Provide choice Behavioural Support recovery behaviour Raise awareness to avoidance behaviour Physical Functional movement Frequent exposure to activity		
Alleviation of symptoms	Acute/Chronic pain/discomfort Acute/chronic stiffness	Depending on patient expectations Physiologically: Active may be better than passive movement Cyclical movement may be better than static approaches Functional or extra-functional			

Consider this management

Recovery processes

Repair phases

Role of mobilisation and pumping

Tissue	Events during inflammation and proliferation	Effects of movement	Immobility
Interstitial space (Oedema)	Medium for repair Transport of nutrients and drainage metabolic by-products and Removal of debris Medium for cell migration Medium for cell communication	Regulate extent of oederna Facilitate flow and supply of nutrients Facilitate drainage Guides migration and movement of interstitula and immune cells	If excessive interfere with repair
Vascular	Supply route nutrients + energy Oxygen for fibroblast - synthesis of collagen	Facilitate flow Direct angiogenesis along force vectors	Reduced flow, affect repair rate and quality Disorganised vascular architecture
Lymphatic	Drainage of interstitium: Metabolic by-products and cell debris	Facilitate drainage Directs lymphangiogenesis by directing flow dynamics	Lymphoedema, poor repair Disorganised lymphangiogenesis
Connective tissue	Building materials for damaged tissues (by fibroblasts), including the interstitial matrix (beif	Effect synthesis by fibroblast Effect & normalise deposition in extracellular space Restore biomechanical properties of tissues (tensile strength, stiffness) Reduce potential for abnormal cross-links and adhesions	Opposite effects
Muscle	As in connective Tissue + regeneration and proliferation by satellite cells	Better myofilist regeneration and orientation. Helps formation of attachments between the myofiliers and extracellular collagen matrix Helps statellise colls differentiation (to myobilasts) Direct formation and alignment of the myotubes along the Force transmission vectors: within the muscle	Increased potential for scarring Reduced contractile and passive properties of muscle Longer recovery
Joints	As in interstitial space	As in interstitial space Support transport to cartilage & intracapsular structures, e.g. meniscus	Longer recovery Joint contractures and adhesions Reducing biomechanical properties of intra- bed antipoperties functioner.

Lederman E (to be published) Functional Exercise Prescription in Movement and Sports Rehabilitation. Handspring, London.

Management during inflammation and proliferation phases

ladin, K. Anatomy and Physiology, McGraw-Hill, 2004

Interstitium and transinterstitial pump

Petros C. Benias et al Structure and Distribution of an Unrecognized Interstitium in Human Tissues. Sci Rep. 2018; 8: 4947. Published online 2018 Mar 27

Tissue tensile strength following injury

Time after injury

The transsynovial pump

Flow through the interstitium

Oedema formation

ndrick C. Boardman and Melody A. Swartz. Interstitial Flow as a Guide for Lymphangiogenesis. Circ. Res. 2003;92;801-808;

inflammation and angiogenesis

https://www.ncbi.nlm.nih.gov/books/NBK53377/

Tension and angiogenesis

Kristman L, Underwood CJ, Steve Maas S et al Effect of Mechanical Boundary Conditions on Orientation of Angiogenic Microvessels. Cardiovasc Res 2008 May 17 78(2): 324–332.

Lymphatic regeneration occurs in direction of interstitial flow

Regenerating region (marked by yellow dashes) is free of LECs, but blood vessels (red) appear to sprout from deeper vessels (open arrows).

Few LECs (green marked by arrowheads) are seen, whereas blood vessel sprouting is present in all directions

LECs (green) are seen in higher numbers in distal end of regenerating region, and more organization (arrows) is also seen in distal end. LECs in proximal half mostly remain as single cells

Cs are present throughout generating region and organized to an interconnected network,

Boardman KC, Swartz MA 2003 Interstitial flow as a guide for lymphangiogenesis. Circ Res. 2003 Apr 18;92(7):801-8.

Degrees of muscle damage

ansiational Sports Medicine, Volume: 2, Issue: 3, Pages: 102-108, First published: 13 January 2019, DOI: (10.1002/tam2.66)

Muscle tissue

Muscle repair: satellite cells

Varying degrees of damage

Effect of intermittent compression on repair

Butterfield TA et al 2008 Cyclic compressive loading facilitates recovery after eccentric exercise. Med Sci Sports Exerc. 2008 Jul;40(7):1289-96

Massage and DOMS

Active recovery, massage, compression garments, immersion, contrast water therapy, and cryotherapy induced a small to large decrease $\{-2, 26 < g < -0.40\}$ in the magnitude of DOMS, while there was no change for the other methods, such as stretching. Massage was found to be the most powerful technique for recovering from DOMS and fatigue

Muscle: Movement vs. immobility

- Faster resolution of repair
- Increase capillary ingrowth
- Better muscle fibre orientation
- Improved tensile strength

Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B 2018 An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Screness, Fatgue, and Inflammation: A Systematic Review With Meta-Analysis, Front Physiol. 2018 Apr 26:9-403. doi: 10.338/bfhys.2018.00403. Collection 2018. Jones II Hang of a can high to at attained mack. 4 Effect of any mubilitation and immediations on the subsporter and generotenia musch. And O's Boart 1091;11(1)(2), and any Hang of a can high to attained mack. A finite of any mubilitation and immediation and immediation on opellary hypoth. And Pethol Monobel Jones II. Markan (a) to be the Jones II. Later Markan (a) the subsport of the subsport of the effect of any mubilitation and immediation on opellary hypoth. And Pethol Monobel Jones II. Later Markan (a) the subsport of the subsport of the effect of any mubilitation and immediation on the period process bibling muscle hypotheses. And Pethol Monobel Board A 1375 Jones II. Later Markan (a) at the subsport of the wing process bibling muscle hypothese. Sport Mark 1392 Fair: (5):78-80.

Clearance rate studies

Joints

Clearance in septic arthritis (Salter et al 1981)
Clearance of haemarthrosis (O'Driscoll et al 1983)

- Reduce joint effusion (Giovanelli et al 1985)
- Clearance of injected dye (Skyhar et al 1985)

Continuous passive motion after repair of the rotator cuff. A prospective outcome study

Continuous passive (n=17) motion vs. manual passive range-of-motion exercises (n=15)

The treatment was extremely successful in both groups.

Excellent score for twenty-seven shoulders (84 per cent), good for two (6 per cent), fair for two (7 per cent), and poor for one (3 per cent). With the numbers available

No significant differences (p > 0.05) between the two groups Manual passive range-of-motion exercises were more costeffective than continuous passive motion. Group CPM (n=29) Continuous passive motion (CPM) 1 h / day Group CPT (n=28) daily active stretching and pendulum exercises for 1 h / day 20 days X 4 weeks.

All patients in both groups were also instructed in a standardized home exercise programme consisting of passive range of motion and pendulum exercises to be performed every day. In both groups, statistically significant improvements were detected in all outcome measures compared with baseline.

Pain reduction, at rest, at movement and at night was better in CPM group. In addition the CPM group showed better shoulder pain index scores than the CPT group

Dundar U, Toktas H, Cakir T, Evcik D, Kavuncu V. 2009 Continuous passive motion provides good pain control in patients with adhesivecapsulitis. Int J Rehabil Res 2009; 32:193-8.

Effects of CPM on pain following joint surgery

FIG. 3. Pain medication taken by patients following total knee arthroplasty with immediate passive mobilization *versus* control subjects (bed rest). From Coutts *et al.*¹⁴

Some evidence for manual drainage

Lymph flow in instrumented dogs varies with exercise intensity. Desai P, Williams AG Jr, Prajapati P, Downey HF. Lymphat Res Biol. 2010 Sep;8(3):143-8. doi: 10.1089/lrb.2009.0029.

Lymphatic pump treatment enhances the lymphatic and immune systems. Hodge LM, Downey HF. Exp Biol Med (Maywood). 2011 Oct 1;236(10):1109-15. doi: 10.1258/ebm.2011.011057. Epub 2011 Aug 24.

Lymphatic pump treatment increases thoracic duct lymph flow in conscious dogs with edema due to constriction of the inferior vena cava. Prajabati P, Shah P, King HH, Williams AG, De Desai P, Downey HF. Lymphat Res Biol. 2010 Sep;8(3):149-54. doi: 10.1089/lrb.2009.0032.

Lymphatic pump manipulation mobilizes inflammatory mediators into lymphatic circulation.

Schander A, Downey HF, Hodge LM. Exp Biol Med (Maywood). 2012 Jan 1;237(1):58-63. doi: 10.1258/ebm.2011.011220. Epub 2011 Dec 14.

Management in the latter repair phases

Passive motion is the only form of passive physical therapy known to stimulate repair / recovery

Henrey LA. Bossesu L. Henterf RD Continuus passive motion following total knee arthropiasty in people with arthritis. Cochrane Database Syst Rev 2019 Mar / 1733 (EDD0466).

wing total knee arthroplasty: a met

atol. 2004 Nov;31(11):2251-6

alysis. J Rheun

Saladin, K. Anatomy and Physiology, McGraw-Hill, 2004

Movement and repair

Importance of movement:

Help resolution of inflammation Reduces swelling / oedema Directs activity of fibroblasts Influence recovery of structural and biomechanical properties of tissues

Aids physiological recovery

Fibroblasts proliferation

Cyclical loading

Effects of Cell Sending and Cyclic Stretch on the Fiber Remodeling in an Extracelular Matrix-Derived Bioscalfold Tasue Eng Part A. 2009 April;15(4):957-963.

Benefits of movement on connective tissue

- · Alignment of collagen fibres
- · Improve tissue strength
- Reduce cross-linking (adhesions)

Adaptive changes associated with immobilization and contracture

Lederman E 2013 Therapeutic stretching: towards a functional approach. Elsevier

From the physical to the biological dimension

Lederman E 2013 Therapeutic stretching: towards a functional approach. Elsevier

12

Recovery: from the physical to the biological dimension

Physical dimension	ROM challenge ↓	
	Increased overloading / altered physical stresses	
Biological dimension	Mechanotransduction	
	Activation of cellular mechanisms ↓	
	Remodelling of tissue ↓	Se.
	Tissue elongation Recovery of extensibility	B. Effects of minibulisation B. Effects of 6 weeks of passive movement
E 0010 E	and the second	

Effects on tensile strength

Gelberman R H, Woo S L-Y, Lothringer K, Akeson WH, Amiel D 1982 Effects of early intermittent passive mobilization on healing canine flexor tendons. Journal of Hand Surgery 7(2):170–175

Mobilisation effects on movement range

Immobilization and connective tissue extensibility

Lederman E 2013 Therapeutic stretching: towards a functional approach. Elsevier

Mobilisation and ROM

Gelberman R H, Woo S L-Y, Lothringer K, Akeson WH, Amiel D 1982 Effects of early intermittent passive mobilization on healing canine flexor tendons. Journal of Hand Surgery 7(2):170–175

Inflamed tissue Adhesion Epidural fat Nerve root

Foraminal pump (& disc imbibition?)

Aggressive vs. Gentle

Group A: Aggressive early passive rehabilitation (manual therapy [2 times per day] and unlimited self-passive stretching exercise Group B: limited continuous passive motion exercise and limited selfpassive exercise

Williams P et al, 1998 The morphological basis of increased stiffness of mbbit tibialis anterior during surgical limb-lengthening; J Anat 193 131-138

RESULTS:

ROM: group A > B until 3 months postoperatively. A=B at 1-year follow-up MRI scan at 6 to 12 post op: Retears - Group A, 7 of 30 cases (23.3%) / Group B 3 of 34 cases (8.8%)

CONCLUSIONS:

A gentle rehabilitation protocol with limits in range of motion and exercise times after arthroscopic rotator cuff repair would be better for tendon healing without taking any substantial risks.

N=64

Lee BG, Cho NS, Rhee YG 2012 Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive exercises. <u>Arthroscopy</u>, Jan;28(1):34-42. The short of it ..

Tolerable/comfortable, cyclical, repetitive movement

THERAPY ON ACUTE PERIPHERAL BLOOD

ALES. 10.1136/

Why pump tissues?

Assisting fluid flow

Inflammation
 Ischaemia

Impediment to flow

Gross fluid flow

Muscle pump

Heart pump

Breathing

The mechanical code for pumping

- Adequate compression
- Intermittent
- Rhythmic
- Repetitive
- (Either passive or active)

External compression and venous flow

Methods: Three different interventions: Passive range of motion (stretching) Active assisted harmonics Passive harmonic therapy Applied to participants' dominant upper extremity shoulder joint (10 Applied to participants dominant upper externing shoulder joint (10 minutes). Primary Outcome Measures: Superficial palmar branch of the radial artery blood flow volume was evaluated with color Doppler ultrasound before and immediately after the intervention. Results: Blood flow volume was significantly increase with active assisted and passive harmonics. No change in blood flow volume with passive roans of medicine intervention. range of motion intervention.

To be published. The effect of harmonic therapy on acute peripheral blood circulation in young makes.

Initial and collecting lymphatics

Shan Liao, Pierre-Yves von der Weid 2014 Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis. 2014 Apr; 17(2): 325–334 The siphon effect

Force of compression

Compression force

Pattern of drainage

Pattern of oscillation

Recovery processes

Lederman E 2013 Therapeutic stretching: towards a functional approach. Elsevier

Two pain-stiffness conditions

Sensitivity (sensitisation)

Injury related stiffness

Pain-stiffness after injury: tissue swelling and sensitivity

Pain stiffness of DOMS

Mayer J et al. The Use of Magnetic Resonance Imaging to Evaluate Lumbar Muscle Activity During Trunk Extension Exercise at Varying Intensities. SPINE Volume 30, Number 22, pp 2556–2563

Pain/stiffness of injury and pain/stiffness of sensitivity

Sensitisation:

Tender points at site of pain: central rather than peripheral generators

Leffler AS, Hansson P, Kosek E. Somatosensory perception in patients suffering from long-term trapezius myalgia at the site overlying the most painful part of the muscle and in an area of pain referral. <u>Eur. J Pain</u>. 2003;7(3):267-76.

Mechanism 2: Peripheral components of sensitisation: biochemical role of cytokines, neuropeptides and neurotransmitters

Mechanism 1: normal & central sensitisation

Woolf CJ 2011 Central sensitization: implications for the diagnosis and treatment of pain. Pain. Mar;152(3 Suppl):S2-15.

Peripheral vs central pain generators

	Peripheral (recovery by repair)	Central sensitisation
Onset	History of trauma	Often unknown cause Can be a sequelae to trauma/ops
Duration	Any pain within 1-6 weeks of injury	Ongoing pain over 12 weeks
Observation	Protective movement strategies Antalgic postures / gait	Movement fears Absence of protective movement strategies
Symptomatic area	Local related to injury Neurological symptoms along clear peripheral pathway	Diffuse non-anatomical Fleeting aches & pains different areas Presence of other unrelated areas of chronic pain conditions
Pattern	Clear onset, a peak and gradual attenuation	Ongoing or intermittent
Palpation	Local to injury Along nerve distribution	Diffuse allodynia and hypersensitivity Sensitivity in diffuse anatomical structures
Neuropathic	Altered sensation and motor control	Often absent

See also: Smart KM, Blake C, Staines A, Doody C 2011 The Discriminative validity of "nockeptive," "peripheral neuropathic," and "central sensitization" as mechanisms-based classifications of musculoskeletal pain. Clin J Pain. 2011 Oct;27(8):655-63. doi: 10.1097/AJP.0b013e318215f16a. Loss of spinal ROM: Biomechanical restriction or stretch sensitivity?

Spontaneous biomechanical stiffening very rare More likely to be stretch sensitivity Loss of spinal ROM: Biomechanical restriction or stretch sensitivity?

Same spinal stiffness in CLBP and normal individuals

Overs EF 3/, DeVolt 3/W, Gudavalli MR, Wilder DG, Meeker WC. Comparison of posteroanterior spinal stiffness measures to clinical and demographic finding at baseline in patients enrelider in a clinical study of spinal manipulation for how back parts. J Nanipulative Physical Ther. 2007 Serg33(7):493-500. Tarlah S, Staton, G. Lorimer Mozeley, Anrold Y. L. Wong, Gregory N. Kawchuk 2017 Feeding stiffness in the back: a protective perceptual inference in chronic back pairs. 6 Na. 2017; 5561. Babeled online. 2017 Aug 23. doi: 10.1038/191598-107-5492-1

Stretch sensitivity in the neck

Meisingset, et al 2015 Evidence for a ger

NP patients showed an overall stiffer and more rigid neck motor control pattern compared to HC, indicated by lower neck flexibility, slower movement velocity, increased head steadiness and more rigid trajectory head motion patterns.

ttern in neck pain: a cross sectional study. BMC Musculoskelet Disord. 2015; 16: 56.

L. E. Hand, T. W. Hopwood, S. H. Dickson, et al. 2016 The circadian clock regulates inflammatory arthritis. The FASEB Journal, 2016; Cata A. D'Agruma L. Tarouini R. Mazzoccoli G 2014 Rheumatoid arthritis and the biological clock May;10(5):687-95. Excert Rev Clin Immi Pain /stiffness (Painiff?) of task exertion/fatigue

Pain /stiffness of fatigue

Pain alleviated by (short) rest

Metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain

Poliak KA et al Engenoally Applied Maucle Metabolism Sprengatically Exoke Semations of Maucle Fatigue and Pain in Human Subjects. Exp Physiol. 2014 Feb; 59(2): 368–380. Published online 2013 Oct 38. Gregory MS, et al 2013 Telegue-inhanced hyperalgenia in response to maulie insult: relaction and development occur in a sem-dependent marrer. Pain. 2013 Dec; 124(12): 2663–3076.

Pain-stiffness of fatigue / exertion

Lars Reservable et al. Increase in marche nociogaties advatences and assentalic methodanin in patiente with trapeature myoligie microduliphia in rest and during exercises. Pain 112 (2004) 234-234 Spignard G et al 2019 Marche oxygenation and glochysis in himmeles with trapeature myoligie and myoligie microduliphia and MRE. Eur J Appl Physick. Marc/100(4) 607-48. Epub 2009 New &

40–71% of back-healthy people develop symptoms in prolong standing CLBP describe the same location and quality but higher pain intensity than backhealthy n to baseline following day

Both groups return to baseline following da

	Ma (at a	x VAS nytime)	Chang (from onse	e in VAS t of standing)	Pain developers	Advante 100 haity 200 colupter 200 colupter 200
	Mean	St Dev	Mean	St Dev		faligle-200 Northel-200
PDs	21.84	10.00	20.53	9.11		Adamting 200
LBP	40.57	18.32	30.50	12.64		hului

Gregory DE, Callaghan JP. Prolonged standing as a pre-Sorensen CI2016 Validity of a paradigm for low back ps Contemp P 2017 Associations of prolonged standing with

(Benign) Standing pain

Not associated with: Mechanisms at the neuromuscular level -

- Muscle fatigue Muscle stiffness
- Lack of muscle strength or endurance Increased co-contraction

Postural:

 Body sway
 Shifting of body weight Fidgeting

Is associated with: increased in stance using flexion and rotation (and lumbar lordosis)

norvstudies, Gait Posture, 2017 Aug 24:58:310-318

Promoting desensitization

Harmonic and CLBP

Supported LEX oscillation (HT) vs. back extension / flexion exercise (ERL) 10 sessions of treatment for 5 sessions per week.

Pain intensity and the RMQ score decreased in the HT technique but not in ERL group. The effect size for HT was .6 for pain and .3 for RMQ

This preliminary study showed that pain intensity and disability improved in subjects with chronic LBP in the HT group. $N\!=\!14$

Arab AM et al 2016 The Effect of Harmonic Technique vs End Range Loading Exercises on Pain and Disability in Patients With Nor Study. J Chiropr Med. 2016 Mar; 15(1): 3–8. Published online 2016 Mar 25. doi: 10.1016/j.jcm.2016.02.007

Use of Harmonic in pain conditions & message to the patient

Pain condition	Role of Harmonic	Message to patient
Piff of injury	Support repair Movement no stretching Harmonic pump techniques	Pain is useful part of recovery. Active movement is beneficial for tissue repair Reduce loading / intensity
Piff of sensitisation	Modulate symptoms Sooth-calm Movement	Unlikely to be injured or damaged Sooth and calm the area Activities / exercise cause no damage

Biomechanical limitation or stretch sensitivity?

Ledeman E (to be published 2020) Functional exercise prescription in movement and sports rehabilitation. Handspring, London *Smith BG, Hendrick P, Smith TO, et al Should exercises be painful in the management of chronic musculoskeletal pain? A syste matic

Condition	Swelling	Stretch sensitivity	Loss of extensibility	Management
Injury				Movement
Sensitisation	\checkmark	\checkmark		(within tolerable discomore)
Fatigue & exertion		\checkmark		
DOMS		1		
Immobilisation			\checkmark	End-range functional
Advanced age	\checkmark	\checkmark	\checkmark	activities ("within uncomfortable stretch". May be painful but safe)*
Autoimmune (scleroderma)			\checkmark	?
Other (Dupuytren's)			\checkmark	

20

Caring-soothing behaviour

Psychological Reassurance Calming-soothing anxieties Distraction (away from pain/external focus) Cognitions – nothing bad happened Compassion/empathy

Physical Holding Rocking Rubbing over the painful area Distraction (using touch / movement)

Touch and coupling analgesia

Brain-to-brain coupling may be involved in touch-related analgesia + when a partner held the hand of a woman during labour, the couple would begin to synchronize their breathing and heart rate patterns, otherwise known as physiological coupling

Paul Goldmin, Int Wassens Fregel Goldman Jowas, Timore G. Samay Timory, Brain do Frain coupling during handholding is associated with pain reduction. Proceedings of the Na Goldmann of Sonson, State 2010;1044 Goldmann ¹¹, Wassenson Fregel ¹, Names Timore ¹(2) The note of tooch its regulating inter-partner physiological coupling during empathy for pain. Sciebus, 2017 June 2017;32: Scieb. 1028 (1946):840 (2016):7.

Harmonic and the brain: soothing and calming

Continuous rocking motion helps to synchronize neural activity in the thalamo-cortical networks of the brain, which play an **important** role in both sleep and memory consolidation.

MEP= motor evoked potential

During 1 Hz cyclic passive movement of the index finger there was an 60% reduction in the amplitude of the motor evoked response from the first dorsal interosseous muscle.

The results of the present study demonstrate that passive movement can have a profound effect on the excitability of the corticomotor pathway.

Perrault et al. Whole-Night Continuous Rocking Entrains Spontaneous Neural Oscillations with Benefits for Sleep and Memory. Current Biology, DOI: 10.1016/j.ou.b.2018.12.028 Komposts et al. Rocking Promotes Sleep in Mice through Rhythmic Stimulation of the Vestibular System. Current Biology, 2019 DOI: 10.1016/j.cub.2018.12.007

Touch intent

Instrumental touch / manipulation:

Edwards, D.J., Thickbroom, G.W., Byrnes, M.L., Ghosh, S. and Mastagla, F.I., 2002. Reduced cortice magnetic stimulation. Numan movement science, 21(5-6), pp. 533-540.

Aim to mechanically cure or prevent the progression of the patient's condition thorough focusing on the body.

Expressive touch / manipulation:

Accepting the patient as a whole – body and mind. Treatment is aimed at improving the patient's condition by supporting the body-mind processes.

Touch effects

Characteristics of instrumental & expressive touch

Importance of touch

In premature & newly born	In children	In adults	In elderly
Promote self-regulation Reduce arousal Infrarts more active & alert Florese repidose of aproea Need less oxygen Higher red blood cell count Improved frequency of stooling Reduced episodes of brady-ardia Less jerky movement More mature motor behaviour Less inflable & less hypertonicty	Promote self-regulation Radice arousal Higher scores on intelligence and development testing Cry less Smile more Retarded physical development (psychological dwarfsm) Child regined and still Orschild control of the second Possible contribution to metal illness in adulthood Under-weight More prome to recurrent infection and accidents Higher mortality rate (children in orphanages)	Support Comford Emotional well being De-stressor	Support Comfort Emotional well being De-stressor Premature death after loss of partner
		Touch & mov	ement stimulation
		Touch & mov	ement deprivation

Pepino VC, Mezzacappa MA 2015 Application of tactle/kinesthetic stimulation in preterm infants: a systematic review. J Pediatr (Rio J), May Jun;91(3):213-33. doi: 10.1016/j.jped.2014.10.005. Epub 2015 Feb 9.

Chemistry of touch (and well being)

	Function	Touch effects
Cortisol	Associated with stress responses	Reduced in variety of conditions by touch
Dopamine	Neurotransmitter Good feelings Positive emotion Increase motivation	Increase during massage
Serotonin	Vital for attention and sense of well being (+ other chem) Low seratonin + cortisol = + aggression Immbalances found in depression, anxiety and schizophrenia	Increase during massage
Oxytocin +opoids and prolactin systems	Bonding hormone (luve hormone) Acceptance Nurture Social solidity and warmth	Increased during touch (also for the therapist!)

Psychological influences of massage & MT

Reduce anxiety	Individuals suffering anxiety 35-37 Women PMT sufferes: 207 Office workers. 176,177 During Iboux: 34,178 Hospitalsation. 179 / surger 187 / burns 180,181 / cardiac surgery 182 / cancer surgery 183, 194 / HVI 185, 186. Sexual and physical abuse. 189 ME sufferers. 192
Reduce depression	Office workers. 176,177 Teerage mothers. 188 Individuals sufficing depression. 35-37 Sexual and physical abuse. 189 ME sufferers. 192
Reduce stress	Office workers. 176,177
Promote relaxation	During labour. 34,178
Improve overall mood	Women PMT sufferes.207
Reduce aggression	Preschool and adolescent children with behavioural problems. 193-195